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Preasymptotic transport of a scalar quantity passively advected by a velocity field formed by a large-scale
component superimposed on a small-scale fluctuation is investigated both analytically and by means of nu-
merical simulations. Exploiting the multiple-scale expansion one arrives at a Fokker-Planck equation which
describes the preasymptotic scalar dynamics. This equation is associated with a Langevin equation involving a
multiplicative noise and an effective �compressible� drift. For the general case, no explicit expression for either
the affective drift on the effective diffusivity �actually a tensorial field� can be obtained. We discuss an
approximation under which an explicit expression for the diffusivity �and thus for the drift� can be obtained. Its
expression permits us to highlight the important fact that the diffusivity explicitly depends on the large-scale
advecting velocity. Finally, the robustness of the aforementioned approximation is checked numerically by
means of direct numerical simulations.

DOI: 10.1103/PhysRevE.71.011113 PACS number�s�: 05.40.�a, 05.60.Cd, 47.27.Qb, 47.27.Te

I. INTRODUCTION

Many problems, from biology to geophysics, include a
variety of degrees of freedom with very different time scales
�1�. As important examples of systems with multiple time
scales we can mention protein folding and the climate. While
the time scale for the vibration of covalent bonds is
O�10−15 s�, the folding time for proteins may be of the order
of seconds �2�. In an analogous way, climate dynamics in-
volves processes with characteristic times ranging from days
�atmosphere� to 102–103 yr �deep ocean and ice shields� �3�.

Even modern supercomputers are not able to simulate all
the relevant scales involved in such difficult problems. Con-
sequently, scientists concerned with multiple-time-scale sys-
tems must develop suitable techniques for the treatment of
the “slow dynamics” in terms of effective equations �1�. This
is a very old problem: an early example of such techniques is
the averaging method in mechanics. Starting from a system
of 2N ordinary differential equations written in the angle-
action variables, where the angles ��1 ,�1 , . . . ,�N� are “fast”
and the actions �I1 , I2 , . . . , IN� are “slow,” the averaging
method gives the leading order behavior of the actions by an
effective equation for the averaged quantities
��I1� , �I2� , . . . , �IN�� obtained by averaging on the angles.

For the sake of self-consistency, we briefly recall the gen-
eral problem. Let us limit ourselves to systems with only two
times scales and denote by x and y the slow degrees of free-
dom and the fast ones, respectively. The time evolution is
given by a set of ordinary differential equations:

dx

dt
= f�x,y� , �1�

dy

dt
=

1

�
g�x,y� , �2�

where ��1 is the ratio between the fast and slow character-
istic time scales. The main goal is to approximate the motion

of the slow variables x by an effective equation where the
fast variables y do not appear.

Up to now, different methods have been proposed. Among
the many, we can mention the Mori-Zwanzig formalism
�4,5�, invariant manifolds, averaging methods �6�, condi-
tional expectations �7�, and Langevin equations �8,9�.

Following the seminal works on Brownian motion
�10,11�, it seems rather natural to mimic the dynamics of fast
variables y through a white-in-time process, which amounts
to describing the slow variables x in terms of a suitable
Langevin equation. This approach is at the basis of the semi-
nal paper of Hasselmann in climate modeling in terms of
stochastic equations �8�.

Under rather general conditions �12�, one has the result
that in the limit of small � the slow dynamics is ruled by a
Langevin equation with multiplicative noise:

dx

dt
= fef f�x� + ��x�� , �3�

where � is a white-noise vector, i.e., the components are
Gaussian processes such that ��i�t��=0, ��i�t�� j�t���=�ij��t
− t��, and ��x� is a tensorial field.

This class of problems attracts a great deal of attention in
many field of physics, including, e.g., statistical physics. We
just mention the celebrated renormalization group which can
be seen as a technique to explicitly determine fef f�x� and
��x� in Hamiltonian systems �13�. There are rather general
results �14,15� that give explicit expression for the coeffi-
cients in Eq. �3� in terms of expectations over the fast pro-
cess generated by Eq. �2� with slow x fixed. On the other
hand there are technical difficulties in the practical use of
such results, and therefore approximations based on physical
ideas �such those in �4–8�� are required; for a recent review
see �16�. Another interesting approach is to use the theoreti-
cal results in �14,15� to built and test a numerical strategy for
effective computation with Eq. �3� �17,18�.
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The aim of this paper is the investigation of a specific
class of problems with many active, coupled degrees of free-
dom. To be more specific, we focus our attention on the
large-scale transport of a scalar field ��x , t� advected by an
incompressible velocity field consisting in the superposition
of a large-scale, slowly varying, component and a small-
scale, rapidly varying, fluctuation; namely,

�t��x,t� + v�x,t� · � ��x,t� = D0���x,t� �4�

with

v�x,t� = U�x,t� + �u�x,t� , �5�

where the typical length scale of U and u are L and �, re-
spectively, and � /L�1. The parameter � controls the relative
strength of the velocity components. It is worth recalling that
Eq. �4� is nothing but the Fokker-Planck equation associated
with the Langevin equation

dx�t�
dt

= v�x,t� + �2D0� . �6�

Our main aim here is to consider an effective large-scale
transport equation for the large-scale scalar field �L, varying
on scales of the order of L, in which the dynamical effects of
the smallest scales appear via a renormalized �enhanced� dif-
fusivity. Such an equation reads �19�

�t�L�x,t� + U�x,t� · ��L�x,t� = �i�Dij�x,t�� j�L�x,t�� �7�

or, in the equivalent form,

�t�L�x,t� + � · �UE�x,t��L�x,t�� = �i� j�Dij
E�x,t��L�x,t�� ,

�8�

where

Ui
E�x,t� � �Ui�x,t� + � jDij�x,t�� , �9�

Dij
E �

Dij + Dji

2
. �10�

We anticipate that Dij�x , t� is in general neither symmetric
nor defined as positive. Its symmetric part �which is also
defined as positive� contributes to the diffusion process while
both the symmetric and the antisymmetric parts enter, in gen-
eral, in the effective advection velocity UE which turns out to
be compressible. As we will show, we have identified a suf-
ficient condition which rules out the antisymmetric contribu-
tion of Dij�x , t� in UE�x , t�. In this case, Dij

E�x , t� is the only
relevant �in general unknown� field of the problem.

The Eulerian view for the large-scale dynamics given by
Eq. �8� is equivalent to the Lagrangian description �written in
the Itô formalism�

dx�t�
dt

= UE�x,t� + �2Dij
E�x,t�� . �11�

Unfortunately, although we know the equation for the
preasymptotic dynamics of a scalar field, no explicit expres-
sion for Dij�x , t� is available in general. We will discuss in
the paper how to proceed perturbatively in � �the parameter
defined in Eq. �5�� in order to obtain an approximate explicit

expression for Dij�x , t�. Other than for applicative purposes,
the advantage of this expression is that it permits us to high-
light the important result that Dij�x , t� explicitly depends on
the large-scale advection U. This is unlike the common way
of thinking of an eddy-diffusivity contribution as the result
of interactions involving only the small scales. Finally, we
will show the results of direct numerical simulation in order
to assess the robustness of the approximation and thus of the
underlying physical mechanisms at the basis of the depen-
dence of Dij�x , t� on the large-scale velocity field.

In more detail, the paper is organized as follow. In Sec. II
we will show how to derive Eq. �7� exploiting the multiple-
scale strategy �see, e.g., �19–23��. The latter is a renormal-
ized perturbation method which requires one to have � /L
�1. In general, the determination of the effective parameters
can be performed only numerically �see, e.g., �19,22��. If, in
addition to � /L�1, we also assume ��1, an explicit ex-
pression for Dij�x , t� can be derived. Some important conclu-
sions can be drawn. Apart from the �trivial� case of shear
flow, Dij�x , t� cannot be constant; the components of the dif-
fusivity tensor depend on the large-scale velocity as well as
on the small scales. This latter point seems to be relevant for
geophysical applications where such dependence on large-
scale flow is often not considered.

In Sec. III we will compute Dij�x , t� perturbatively in �.
Only the leading, O���, term of the series will be calculated
analytically. This term is exact in some particular cases. Al-
though also for the higher-order terms analytical expressions
can be given, their complexity does not permit us to extract
relevant information.

Numerical simulations performed on the exact Eq. �4�
show that the approximate first-order solution is in very good
agreement with numerical simulations also for � and � /L not
too small, say 0.2–0.4. In addition we propose an empirical
“recipe” to obtain a constant eddy diffusivity for preasymp-
totic transport. This is shown in Sec. IV.

In Sec. V we will discuss how, at least in principle, in the
presence of velocity fields u�x , t� containing contributions at
many different scales, the multiple-scale approach can be
iterated, in such a way that a renormalization group proce-
dure naturally emerges with the result that an effective equa-
tion for asymptotic scales which involves an effective diffu-
sivity DE can be obtained. Because of technical difficulties,
the explicit detailed computation of the iteration procedure
appears quite cumbersome. Nevertheless, for the dependence
of DE on the velocity field, one can derive �and generalize�
some results previously obtained in a phenomenological way.

Finally, Sec. VI is reserved for final conclusions and open
problems.

II. MULTIPLE-SCALE ANALYSIS

Multiple-scale analysis applied to transport phenomena
�see, e.g., Ref. �21�� constitutes a powerful tool to extract the
equations ruling the large-scale dynamics from first prin-
ciples, i.e., the equations describing the entire set of spatial
and temporal degrees of freedom.

From a general point of view, the large-scale equations
involve renormalized parameters which can usually be deter-
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mined by solving an auxiliary differential problem that re-
quires the knowledge of the fully resolved fields. This is, for
instance, the case analyzed in Ref. �23� where it is shown
that the large-scale dynamics of a scalar field, in the presence
of scale separation with respect to the �small-scale� advecting
velocity field, is governed by an effective equation that is
always diffusive. The diffusion coefficient �actually a tensor�
turns out to be larger than the bare �molecular� diffusion
coefficient: unsolved turbulent motion enhances the large-
scale transport �see Ref. �20��.

The latter result has been generalized in Ref. �19� where
the preasymptotic passive scalar dynamics has been ana-
lyzed. There, the assumption of dealing with a small-scale
advecting velocity field has been relaxed and the possible
dependence of velocity on scales comparable with those of
the scalar has been taken into account. As a result, we will
show here that the large-scale �preasymptotic� equation does
not have a Fokker-Planck structure although it involves a
renormalized diffusivity �actually a tensorial field�. The latter
is varying on scales comparable with those of the large-scale
components of the advecting velocity. As a consequence, no
Lagrangian description is associated with such a Eulerian
equation.

A. Preasymptotic dynamics of a passive scalar:
Heuristic considerations

The starting point of our analysis is the equation ruling
the evolution of a passive scalar field ��x , t� in an incom-
pressible velocity field v:

�t��x,t� + v · � ��x,t� = D0���x,t� . �12�

If one is interested in studying the scalar dynamics in the
deep infrared limit �i.e., very large scales� the proper choice
for v is as in Ref. �20�: a small-scale field varying on scales
well separated from those at which the scalar dynamics is
observed.

More frequently, in real applications �e.g., in geophysics�
one could be interested in studying the scalar dynamics on
large scales where the advecting velocity is, however, still
relevant �i.e., at such wave numbers the velocity is apprecia-
bly nonzero�. Following Ref. �19�, the simplest way to treat a
similar situation is to decompose v as the sum of u�x , t� and
U�x , t�. The former is assumed to vary on what we call
“small scales” �i.e., wave numbers of O�1�� while the latter
evolves on “large scales” having wave numbers of O���, the
same at which we aim at investigating the scalar dynamics.

Naive arguments would suggest a simple �wrong� conclu-
sion: U�x , t� gives the advection contribution in the large-
scale equation for � while the renormalized diffusion coeffi-
cient emerges from small-scale interactions between � and u.
A detailed analysis actually shows that this conclusion is
wrong: the large-scale velocity U�x , t� is not responsible for
only the large-scale advection; it also enters in the renormal-
ized diffusivity.

Before proceeding with a formal derivation where this
effect clearly emerges, let us give a heuristic argument in
favor of such a mechanism.

Suppose we have a large-scale initial condition for � at
time t=0 behaving on wave numbers of O��� and, moreover,
v=u �i.e., the case discussed in Ref. �20��. Due to the advec-
tion term u ·� in Eq. �4�, scalar components with wave num-
bers of O�1+�� are excited at larger times. The latter scalar
components can interact, again due to the action of u ·�,
with those of u to generate, at successive times, large-scale
components of �. This is the basic mechanism giving rise to
the renormalization of the bare diffusion coefficient via in-
teraction involving small scales.

Let us now repeat the argument in the presence of U
which varies on the scale of wave numbers of O���. The
interactions we have described above continue to work with
the main difference that new contributions to the wave num-
bers of O�1+�� now come from interactions of O��� modes
of U and O�1� modes of �. The latter modes being involved
in the renormalization process, one can conclude that U
plays a role in such renormalization. Whether or not this is
really the case requires a formal analysis, which is the sub-
ject of the next section.

B. Formal analysis for the preasymptotic scalar transport

Following Ref. �19�, let us decompose v as v�x , t�
�U�x , t�+u�x , t� where U�x , t� and u�x , t� are assumed to be
periodic in boxes of sides O��−1� and O�1�, respectively.
�The technique we are going to describe can be extended
with some modifications to handle the case of a random,
homogeneous, and stationary velocity field.�

Our focus is on the large-scale dynamics of the field
��x , t� on spatial scales of O��−1�. In the spirit of multiple-
scale analysis, we introduce a set of slow variables X=�x,
T=�2t, and 	=�t in addition to the fast variables �x , t�. The
scaling of the times T and 	 is suggested by physical reasons:
we are searching for diffusive behavior on large time scales
of O��−2� taking into account the effects played by the ad-
vection contribution occurring on time scales of O��−1�.

The prescription of the technique is to treat the variables
as independent. It then follows that

�i � �i + ��i, �t � �t + ��	 + �2�T, �13�

u � u�x,t�, U � U�X,T� , �14�

where � and � denote the derivatives with respect to fast and
slow space variables, respectively. The solution is sought as
a perturbative series

��x,t;X,T;	� = ��0� + ���1� + �2��2� + ¯ , �15�

where the functions ��n� depend, a priori, on both fast and
slow variables. By inserting Eqs. �15� and �13� into Eq. �4�
and equating terms having equal powers in �, we obtain a
hierarchy of equations in which both fast and slow variables
appear. The solutions of interest to us are those having the
same periodicities as the velocity field u�x , t�.

By averaging such equations over the small-scale period-
icity �here denoted by �·��, a set of equations involving only
the large-scale fields �i.e., depending on X, T, and 	� are
easily obtained. Obviously, such equations must be solved
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recursively, because of the fact that solutions of a given order
appear as coefficients in the equations at the higher orders.
Let us show in detail this point.

It is not difficult to verify that the equations at order � and
�2 read �19�

O���:�t�
�1� + �v · ����1� − D0�

2��1� = − �v · � ���0� − �	�
�0�,

�16�

O��2�:�t�
�2� + �v · ����2� − D0�

2��2�

= − �T��0� − �v · � ���1� + D0�
2��0�

+ 2D0�� · � ���1� − �	�
�1�. �17�

The linearity of Eq. �17� permits us to search for a solution in
the form

��1��x,t;X,T;	� = ���1���X,T;	� + ��x,t;X,T� · � ��0��X,T;	� ,

�18�

where ��0� depends only on the large-scale variables as in
Ref. �20�. Plugging Eq. �18� into the solvability condition for
Eq. �17�, one obtains the equation

�T��0� + �U · � ����1�� + �	���1�� = �i�Dij� j�
�0�� , �19�

where

Dij�X,T� = �ijD0 − �ui
 j� �20�

is a second-order tensorial field and ��x , t ;X ,T� has a van-
ishing average over the periodicities and satisfies the follow-
ing equation:

�t
 j + ��u + U� · ��
 j − D0�
2
 j = − uj . �21�

Note that, when U is not a pure mean flow but depends on
X and T, Eq. �21� must be solved for each value of X �and
eventually T�.

From Eq. �19� and from the solvability condition of Eq.
�16�,

�	���0�� + �U · � ����0�� = 0, �22�

one obtains the equation for the large-scale field �L defined
as �L����0��+����1��:

�t�L + �U · ���L = �i�Dij� j�L� , �23�

where the usual variables x , t are used.
The important point to note is that Dij is in general neither

symmetric nor defined positive. On the contrary, it is easy to
show �19� that Dij

E ��Dij +Dji� /2 is �obviously� symmetric
and defined positive. Its expression can immediately be ob-
tained from Eq. �21� in term of only the auxiliary field:

Dij
E = D0��p
i�p
 j� . �24�

In terms of Dij
E and Dij

A ��Dij −Dji� /2, the preasymptotic
equation �23� takes the form

�t�L + � · �UE�L� = �i� j�Dij
E�L� , �25�

where

Ui
E�x,t� � �Ui�x,t� + � jDij

E�x,t� + � jDij
A�x,t�� �26�

is an effective compressible advecting velocity �24�. Advec-
tion by compressible velocities have been investigated, e.g.,
in Refs. �25,26�.

C. Formal analysis for the asymptotic scalar transport

Our aim is now to investigate transport on scales much
larger than the typical length of the field U, i.e., on scales
L�L.

Homogenization leads to a purely diffusive dynamics
which involves a set of new slow variables X=��X and T
=��2T describing the large-scale field �L= ��L�. Averages are
now over the cell of size L:

�T�L = Dij
L�i� j�L. �27�

There are two different ways to arrive at the large-scale
equation �27�. The first way is to apply the homogenization
technique from Eq. �23� while the second possibility is to
start directly from Eq. �4�. Let us consider the first option. In
this case, the asymptotic eddy-diffusivity tensor DL will then
result from the combined effects of the advection given by
the large-scale flow U�X ,T� and the diffusion at scale �
which also depend on space and time through Dij�X ,T�,

Dij
L = −

�Ui
 j� + �Uj
i�
2

+
�Dik�k
 j� + �Djk�k
i�

2

+
�Dij� + �Dji�

2
, �28�

where the vector field � is here a solution of the auxiliary
equation

�t
k + �U · ��
k − ��Dij� j
k� = − Uk + �iDik. �29�

If one follows the second way to obtain the large-scale
equation �27�, the �exact� value of the eddy-diffusivity tensor
DL,ex depends on both the molecular diffusivity and the ad-
vection by the total velocity field v=U+u:

Dij
L,ex = �ijD0 −

�vi
 j� + �v j
i�
2

. �30�

Here, the auxiliary field � is the solution of the following
equation:

�t� + �v · ��� − D0�
2� = − v . �31�

The latter procedure gives the exact value of the eddy-
diffusivity tensor DL,ex, but requires the detailed knowledge
of the velocity field at both large and small scales. On the
other hand, the expression obtained from Eq. �28� �which, in
general, does not coincide with DL,ex� is based on only the
large-scale velocity U, and the effects of the small-scale flow
are included in the eddy diffusivity Dij�X ,T�.

A clear indication that DL,ex�DL can be obtained by not-
ing that the eddy-diffusivity tensor Dij does not depend on
the relative position �i.e., possible spatial shifts� between the
two fields U and u. This is an obvious consequence of scale
separation which washes out all detailed differences between
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the two fields. Therefore, the effects of relative shifts be-
tween U and u which are taken into account in the exact
eddy-diffusivity tensor DL,ex are missed by the approximate
expression for DL. A comparison between the expressions for
the asymptotic diffusivities obtained by following the two
different homogenization procedures allows one to quantify
the error of the approximate strategy.

It is worth mentioning a particular case in which both
procedures lead to the same results. This is the case when the
velocity field v is given by the sum of two parallel steady
shears,

v�x;X� = u�x� + U�X� , �32�

with

u�x� = „u�y�,0…, U�X� = „U�Y�,0… , �33�

where U and u vary on scales of the order of L and �, re-
spectively.

A first homogenization on the small scales � leads to an
eddy diffusivity �we use the equivalent notations Dxx�D11
and Dyy �D11�

Dxx = D0 +
1

2
	 
û
2dk

D0k2 , Dyy = D0, Dij = 0 ∀ i � j .

�34�

One can now repeat the same homogenization procedure at
large scales L, obtaining

Dxx
L = Dxx +

1

2
	 
Û
2dk

Dyyk
2 = D0 +

1

2
	 
û
2dk

D0k2 +
1

2
	 
Û
2dk

D0k2 ,

�35�

which coincides with the exact coefficient obtained from the
homogenization carried out from Eq. �4� which involves the
total velocity field v=U+u:

Dxx
L,ex = D0 +

1

2
	 �
Û
2 + 
û
2�dk

D0k2 . �36�

III. AN APPROXIMATE EXPRESSION FOR THE
EDDY-DIFFUSIVITY FIELD

In the previous section we have shown how to reduce the
computation of the eddy-diffusivity tensor Dij�x , t� to the so-
lution of an auxiliary equation. It is, however, worth noting
that the parametric dependence on the large-scale variables
X ,T in the auxiliary field ��x , t ;X ,T� in Eq. �21� imposes a
rather severe limit to the practical use of Eq. �23�. If the
large-scale velocity U depends on space and time, one has
indeed to solve an auxiliary equation in �2d+1� dimensions.

Therefore, except for very few cases in which one can
obtain an analytic solution for ��x , t ;X ,T�, e.g., in the case
of orthogonal shears �see Sec. III B�, Eq. �20� does not pro-
vide a practical tool for evaluating the eddy diffusivity of
generic flows. The computational cost required for the solu-
tion of the auxiliary equation can indeed be heavier than that
required for the solution of the complete equation.

In the following we will show how the presence of an
intense large-scale flow permits one to overcome this limit.
Indeed, if the strength of the large-scale flow U is much
larger than that of the small-scale velocity field u, one can
seek the solution of the auxiliary equation as a perturbative
series in the small parameter �=u /U:

��x,t;X,T� = ��0� + ���1� + �2��2� + ¯ , �37�

where the functions ��n� depend on both fast and slow vari-
ables. By inserting Eq. �37� into Eq. �21� and equating terms
having equal powers in �, we obtain a hierarchy of equa-
tions:

�t�
�0� + �U · ����0� − D0�

2��0� = 0, �38�

�t�
�1� + �U · ����1� − D0�

2��1� = − u , �39�

]

�t�
�n� + �U · ����n� − D0�

2��n� = − �u · ����n−1�. �40�

The zeroth-order equation has the trivial solution
��0�=��0��X ,T�, which clearly does not contribute �see Eq.
�20�� to Dij�X ,T�, while the higher-order equations can be
easily solved in Fourier space. At first order in � the solution
reads

�̂�1��k,�;X,T� =
− û�k,��

i�� + U · k� + k2D0
, �41�

which, exploiting Eq. �20�, leads to the following expression:

Dij�X,T� = D0�ij +	 dq d��Re�ûi�− q,− ��ûj�q,���q2D0

�� + U · q�2 + q4D0
2

+
Im�ûi�− q,− ��ûj�q,����� + U · q�

�� + U · q�2 + q4D0
2 � + O��3� .

�42�

Equation �42� permits one to highlight some important
points. The eddy diffusivity is not simply determined by the
small-scale flow: it actually has an explicit dependence on
the large-scale velocity components. A rough estimation of
the eddy diffusivity based on the sole small-scale field can
lead to completely wrong results when a large-scale flow is
present. Moreover, the variation in space and time of the
velocity field U�X ,T� induces an implicit dependence on the
slow variables X ,T in the eddy diffusivity, which thus be-
comes a tensorial field. We stress the fact that such a depen-
dence on X ,T is not a consequence of the approximation
�42�, the same property holds if one use the exact �.

The physical origin of this effect is the strong sweeping
caused by the large-scale velocity field, which changes the
effective correlation times of the small-scale flow. Therefore,
the frequencies � that appear in Eq. �41� experiences a Dop-
pler shift corresponding to the inverse of the sweeping time
U ·k. Only when the temporal variation of the small-scale
flow is much faster than the large-scale sweeping, i.e., when
the power spectrum of the small-scale flow is peaked at very
high frequencies ��U ·k, one obtains a constant tensor
which does not depend on U:
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Dij�X,T� = D0�ij +	 �Re�ûi�− q,− ��ûj�q,���q2D0

�2 + q4D0
2

+
Im�ûi�− q,− ��ûj�q,����

�2 + q4D0
2 �dq d� + O��3� .

�43�

As we have already shown in Sec. II B, both the symmet-
ric and the antisymmetric parts of Dij contribute to the effec-
tive advecting velocity

Ui
E�x,t� � Ui�x,t� + � jDij

E�x,t� + � jDij
A�x,t� . �44�

Exploiting the explicit expression for Dij it is easy to derive
a sufficient condition under which Dij

A is identically zero �and
thus � jDij

A�x , t�=0�. If this condition is satisfied, then only Dij
E

is relevant for the dynamics at preasymptotic scales. This
seems interesting for applications in view of the fact that, in
three dimensions, only six, rather than nine, fields �the com-
ponents of Dij

E� must be taken into account.
Formally, the analytic result obtained for the eddy diffu-

sivity is valid only in the limits � /L�1 and u /U�1. There-
fore we must expect some discrepancies between the actual
results for � /L1 and u /U1 and those obtained exploit-
ing the multiple-scale method. Actually, we will show in Sec.
IV that good results are obtained even if the ratio between
the characteristic scales of the flows, �=� /L, and amplitudes,
�=u /U, are not too small.

A. A sufficient condition for the effective advecting velocity

As a starting point let us rewrite ûi in term of its real and
imaginary parts, ûi= ûi

R+�−1ûi
I, and plug it into Eq. �42�

which takes the form

Dij�X,T� = D0�ij +	 � q2D0

�� + U · q�2 + q4D0
2

 �ûi
R�q,��ûj

R�q,�� + ûi
I�q,��ûj

I�q,���

+ �ûi
R�q,��ûj

I�q,�� − ûi
I�q,��ûj

R�q,���


� + U · q

�� + U · q�2 + q4D0
2�dq d� + O��3� .

�45�

From the above expression one immediately realizes that
the antisymmetric part of Dij�X ,T� is

Dij
A�X,T� =	 �ûi

R�q,��ûj
I�q,�� − ûi

I�q,��ûj
R�q,���


� + U · q

�� + U · q�2 + q4D0
2dq d� . �46�

The condition for the latter to be zero is

ûi
R�q,��ûj

I�q,�� − ûi
I�q,��ûj

R�q,�� = 0, �47�

from which sufficient conditions for its validity are immedi-
ately obtained:

ûR�q,�� = 0 ∀ q and � or ûI�q,�� = 0 ∀ q and � .

�48�

Conditions �48� amount to saying that if the small-scale ve-
locities have defined parity with respect to space and time
inversion, then only the symmetric part of Dij controls the
preasymptotic scalar dynamics.

To conclude, it is worth observing that the formula �42�
can be generalized to random small-scale velocity mim-
icking turbulent small-scale fluctuations. In this case
ûi�−q ,−��ûj�q ,�� in �42� must be replaced by
�ûi�−q ,−��ûj�q ,��� where the angular brackets denote the
average with respect to small-scale velocity statistics. If one
deals with stationary, homogeneous and isotropic fluctua-
tions the spectral tensor �ûi�−q ,−��ûj�q ,��� is invariant un-
der q→−q and �→−� with the immediate consequence that

�ûi
R�q,��ûj

I�q,��� − �ûi
I�q,��ûj

R�q,��� = 0, �49�

a condition that generalizes �47�.

B. The case of orthogonal shears

Although Eq. �42� is just a first-order approximation, it
provides a concrete tool to estimate the eddy diffusivity, and
it can be shown that for the particular case of orthogonal
shears it recovers the exact solution �19�. Indeed, if the ve-
locity field is the sum of two orthogonal shears

v�x,t;X,T� = u�x,t� + U�X,T� �50�

with

u�x,t� = „u�y,z,t�,0,0…, U�X,T� = „0,U�X,Z,T�,0…
�51�

it follows from Eq. �21� that the unique nonvanishing com-
ponent of the auxiliary field is the one in the direction of the
small-scale velocity, and it is constant along that direction.
Therefore the small-scale velocity field does not give contri-
butions in the advective term of Eq. �21� which can exactly
be solved in Fourier space to obtain

�̂�k,�;X,T� = � − û�k,��
i�� + U · k� + k2D0

,0,0� . �52�

IV. NUMERICAL RESULTS AND “EMPIRICAL RECIPES”
FOR THE PREASYMPTOTIC TRANSPORT

In the previous section we have discussed a perturbative
solution and its possible limitations when u /U and � /L are
not very small. Let us now present some numerical results
and an empirical “recipe” for a constant �i.e., without space
and time dependence� preasymptotic eddy diffusivity.

A. Numerical results

As an example of small-scale incompressible flows we
consider a steady cellular flow �20,22,27� defined by the
stream function �=�0 sin�kx�sin�ky� with �0=u /k:
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u = ��y�,− �x�� = „u sin�kx�cos�ky�,− u cos�kx�sin�ky�… .

�53�

Its characteristic length scale is given by �=2� /k and its
amplitude is u.

In the absence of large-scale velocity fields and for large
Péclet numbers �Pe=u� /D0�, it is possible to show by means
of simple physical arguments �28� that this periodic array of
small vortices give rise to an enhancement of the effective
diffusivity DED0

�Pe. A precise estimation of this constant
eddy diffusivity can be obtained by the numerical solution of
Eq. �21�, with U=0.

The modifications induced on the eddy diffusivity by the
presence of a large-scale flow

U = „U�X,Y,T�,V�X,Y,T�… �54�

with characteristic length scale L=� /� and strength U=u /�
can be estimated from Eq. �42�. Thanks to the simplicity of
our small-scale flow, the integral in Eq. �42� reduces to the
sum of contributions of four modes �±k , ±k�, and trivial cal-
culations lead to

Dij
E = D0�ij�1 +

1

4
u2� 1

�U + V�2 + �2kD0�2

+
1

�U − V�2 + �2kD0�2�� + O��3� . �55�

For such a system the antisymmetric part Dij
A is identically

zero.
Let us now focus on two idealized large-scale flows,

which are representative of two broad classes of realistic
situations: a steady shear

U = „U sin�Ky�,0… �56�

and a large-scale replica of the cellular flow

U = „U sin�Kx�cos�Ky�,− U cos�Kx�sin�Ky�… . �57�

Their characteristic length scale is L=2� /K and U is their
amplitude. For the case of the large-scale shear, Eq. �55�
reduces to

Dij
E = D0�ij�1 +

1

2

u2

U2 sin2�y� + �2kD0�2� + O��3� �58�

while in the case of the large-scale cellular flow one gets

Dij
E = D0�ij�1 +

1

4
u2� 1

U2 sin2�K�x + y�� + �2kD0�2

+
1

U2 sin2�K�x − y�� + �2kD0�2�� + O��3� . �59�

In Fig. 1 we compare the exact multiple-scale solution for
Dxx

E �y� in the case of the large-scale shear flow with the ap-
proximation �58� and the constant estimation based on only
the small-scale cellular flow, respectively. In most of the do-
main the first-order approximation recovers quite well the
exact solution, with the exception of narrow regions where
the large-scale flow vanishes and the actual diffusivity is
mainly determined by the cellular flow.

In all figures and tables we show quantities made dimen-
sionless in the form

x →
x

L0
, v → v

U0
, t → t

U0

L0
, D →

D

L0U0
, �60�

where U0=U and L0=L /2�.
Once the first-order approximations �58� and �59� for the

eddy diffusivity have been plugged into the preasymptotic
large-scale equation, we compute the asymptotic eddy diffu-
sivity at very large scales L.

Numerical integration of the auxiliary equation �29� is
advanced in time until the asymptotic eddy diffusivity given
by Eq. �28� converges to its constant value. The latter is then
compared with the values given by homogenization of Eq.
�4� for different phase shifts between U and u.

The observed variability of DL,ex for different phase shifts
provides an estimation of the accuracy of the multiple-scale
results. Indeed, as already noted, the two successive homog-
enizations do not capture any effect induced by the phase
shift.

Here, we consider the two extreme possibilities �i� the
zeros of the large-scale flow coincide with the nodes of the
small-scale cellular flow �case �a��; �ii� the zeros of the large-
scale flow are located on the bulges of the small-scale cellu-
lar flow �case �b��.

In addition, we compute the constant eddy diffusivity

Dij
E = D̃�ij of the velocity field containing the small-scale cel-

lular flow only. This leads to a rather crude approximation
for the asymptotic eddy diffusivity DL,n �in the following, we
will refer to it as the “naive approximation”�.

For the large-scale shear, the asymptotic diffusion tensor
DL is diagonal and strongly anisotropic. In Fig. 2 we show
its component Dxx

L in the direction parallel to the large-scale

FIG. 1. The eddy diffusivity Dxx
E �y� resulting from a small-scale

cellular flow superimposed on a large-scale shear in the x direction.
The approximation �58� �solid line� recovers quite well the exact
multiple-scale solution �dashed line�, except for narrow regions
where the large-scale flow vanishes �y=n�� and the actual diffusiv-
ity recovers the constant estimation based on only the small-scale
cellular flow �dash-dotted line�. The parameter values are U=1, L
=2�, u /U=1/4, � /L=1/8, D0=0.01. Units are made dimension-
less according to Eq. �60�.
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shear flow. The scale separation is � /L=1/4, the ratio of
amplitudes is u /U=1/4, and the molecular diffusion is fixed
to the value D0=10−2.

In the direction of the shear the effect of the small-scale
flow is to reduce the asymptotic diffusion coefficient, which
for the pure large-scale shear flow would be given by

Dxx
L = D0 +

1

2

U2

K2D0
= 50.01. �61�

Such reduction is due to interference mechanisms between
small-scale and large-scale motion �29�.

With our parameters the actual reduction is of the order of
20–30%, depending on the phase shift between U and u. The
first-order approximation �42� for the eddy diffusivity pro-
vides a good estimation giving a reduction for Dxx

L of about
28% �see Table I�. On the contrary the “naive approxima-
tion” gives a reduction for Dxx

L of about 60%, which is deeply
wrong.

In the transverse direction, the bare molecular diffusivity
D0 is increased by the presence of the small-scale flow. The
“naive approximation” overestimates this effect, giving an
enhancement of about 170% of D0, while approximation �42�
is in rather good agreement with the actual value of about
12–20 %.

It is worth stressing that the large errors given by the
“naive approximation” rather than being consequences of fi-
nite scale separation are mainly due to the fact that the ef-
fects of the large-scale flow have been neglected in the con-

stant eddy diffusivity Dij
E�X ,T�= D̃�ij. Indeed, with a larger

scale separation � /L=1/8 the approximate solution gives re-
sults within the 2% of the actual values, while the “naive
approximation” still gives an error of about 30% �see Table
I�.

In the case of the large-scale cellular flow �see Fig. 3� the
asymptotic eddy diffusivity is isotropic, and the first-order
approximation is even more robust, providing good estima-
tions also for �=� /L=1/4 and �=u /U=1/2 �see Table II�.
The errors of the “naive approximation” are of the order of
100%.

B. An empirical “recipe”

We discuss now an empirical “recipe” to obtain a constant
�i.e., having no variation in space and in time� eddy diffusiv-
ity to describe preasymptotic scales. The question is thus on
whether it is possible to mimic the preasymptotic transport

FIG. 2. Time evolution of the asymptotic eddy diffusivity in the
direction of the large-scale shear up to its convergence to its con-
stant value. The scale separation between the large-scale shear and
the small-scale cellular flows is � /L=1/4, the ratio of amplitudes is
u /U=1/4, and the molecular diffusivity is fixed to the value D0

=10−2. The first-order approximation in �=u /U �solid line� pro-
vides a good estimation on the actual values, which depend on the
relative phase shift between the two fields: case �a� is denoted by
the dashed line, case �b� is denoted by the dotted line. For compari-
son we also show the results obtained from the “naive estimation”
�dash-dotted line� in which the effects of the large-scale flow have
been neglected. Units are made dimensionless according to Eq.
�60�.

TABLE I. Asymptotic eddy diffusivity resulting from the effects
of large-scale shear flow �U=1, L=2��, small-scale cellular flow,
and molecular diffusivity D0=0.01. DL,ex �cases �a� and �b�� are the
actual values obtained from direct homogenization of the whole
velocity field v=U+u. DL and DL,n are obtained from the homog-
enization of the preasymptotic equation where the preasymptotic
eddy diffusivities are approximated by expression �42� and by re-
taining only the small-scale cellular flow, respectively. Units are
made dimensionless according to Eq. �60�.

� /L u /U DL,ex DL DL,n

1/4 1/4 Dxx=41.6�a�, 34.5�b� 36.7 18.7

Dyy =0.0112�a�, 0.0122�b� 0.0119 0.0267

1/8 1/4 Dxx=41.5�a�, 40.5�b� 39.6 28.3

Dyy =0.0112�a�, 0.0113�b� 0.0115 0.0178

FIG. 3. The same as in Fig. 2 for the case of the large-scale
cellular flow �� /L=1/4 ,u /U=1/4 ,D0=10−2�. Time evolution of
the asymptotic eddy diffusivity DL is well approximated by the
first-order approximation �42� �solid line�, while the “naive estima-
tion” �dash-dotted� does not match the actual values which depend
on the relative phase shifts between the two fields: case �a� dashed
line; case �b� dotted line. Units are made dimensionless according
to Eq. �60�.
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by means of an average diffusion tensor Dij
E,a, which still

takes into account the effects of the large-scale flow U but
does not depend on the position. In general it is not clear
which is the correct way for averaging Dij�X ,T� to obtain a
constant, but still anisotropic diffusion tensor. Here, we pro-
pose a possible “recipe” which is inspired by the multiple-
scale approach. The idea consists in applying the homogeni-
zation technique just on the diffusive term of the pre-
asymptotic equation, obtaining Dij

E,a in the same way as for
DL:

Dij
E,a =

�Dik�k
 j� + �Djk�k
i�
2

+
�Dij� + �Dji�

2
, �62�

where the vector field � is a solution of the auxiliary equa-
tion

�t
k + �U · ��
k − ��Dij� j
k� = �iDik. �63�

Although the recipe �62�, �63� cannot be rigorously proved, it
is possible to give a rough argument in favor of it. Equations
�62� and �63� can be seen as the analogs of Eqs. �28� and �29�
in which only the eddy-diffusivity contributions to the
asymptotic diffusion tensor have been retained.

The above discussed preaveraged constant diffusion ten-
sor is potentially interesting in applications, where it is al-
most impossible to deal with space-dependent eddy diffusivi-
ties. Let us stress the fact that Dij

E,a in Eq. �62� is constant,
but it takes into account the effects of the large-scale flow to
provide a correct estimation of an effective diffusion tensor.

Numerical simulations of the preasymptotic equation �23�
in which Dij�X ,T� is replaced by the constant tensor Dij

E,a

confirms that this averaging recipe leads to considerable im-
provements with respect to the “naive approximation” ob-
tained without considering the effects of the large-scale flow.

Table III shows the results in the case of the large-scale
shear flow, where this averaging leads to a rather good ap-
proximation DL,a for the asymptotic eddy diffusivity; similar
results hold for the case of large-scale cellular flow.

V. MULTIPLE-SCALE EXPANSION AND
RENORMALIZATION GROUP

In previous sections we studied the problem of large-scale
transport in field varying on two separated scales that we
called large and small scales, respectively.

In practical applications, one has to deal with advecting
velocity fields having almost a continuum of active scales. In
this latter case, we can write

u�x,t� = �
n=0

N

un�x,t� = u0�x,t� + �u�x,t� , �64�

where the Fourier transform of un�x , t� is picked on wave
numbers around kn ln

−1=2−nl0
−1. Denoting with E�k� the en-

ergy spectrum, one has

1

2
�
un�x,t�
2� � 	

kn

kn+1

E�k�dk . �65�

We are now ready to address the following question:
What is the effect of �u�x , t� on the effective asymptotic
eddy diffusivity? In other words, we aim at obtaining an
effective large-scale equation and determining the depen-
dence of UE and DE on �u�x , t� and D0, respectively.

A natural way to answer our question is to exploit the
renormalization group point of view. The basic idea proceeds
through these steps.

�1� Starting from the original equation �4�, one considers
the field

UN−1�x,t� = �
n=0

N−1

un�x,t� �66�

as the one at large scales and uN�x , t� as the contribution at
small scales. Recalling the results of the multiple-scale ex-
pansion reported in Sec. II, we can write the effective equa-
tion for the field including the contribution up to the scale
N−1, i.e.,

�t� + UN−1
E · � � = � �DN−1

E � �� , �67�

where UN−1
E and DN−1

E are determined by the multiple-scale
analysis of Secs. II and III. It is rather obvious that it is
almost impossible to repeat in full detail the multiple-scale
procedure. On the other hand, if one is interested only in the
order of magnitude, interesting results can be obtained by
neglecting the dependence on x. In this spirit we obtain

DN−1
E � D0 + const

D0�
uN
2�kN
2

�D0kN
2 �2 + �kN
UN−1
�2 �68�

and

UN−1
E = UN−1�x,t� + �UN−1, �69�

where �UN−1 is the compressible contribution originating
from the dependence of DN−1

E on x.
�2� As a second step, one now has to iterate the previous

procedure. In order to simplify the computation, as before we
do not take into account either the dependence of DN−1

E on x
or the compressible correction on UN−1

E . We have just to re-

TABLE II. The same as in Table I for the large-scale cellular
flow.

� /L u /U UL,ex DL DL,n

1/4 1/2 0.111�a�, 0.123�b� 0.135 0.209

1/4 1/4 0.107�a�, 0.112�b� 0.113 0.175

TABLE III. The same as in Table I. The asymptotic eddy diffu-
sivity DL,a is obtained from the homogenization of the preasymp-
totic equation where the preasymptotic eddy diffusivity is approxi-
mated by the constant value given by Eq. �62�.

� /L u /U DL,ex DL,a DL,n

1/4 1/4 Dxx=41.6�a�, 34.5�b� 42.1 18.7

Dyy =0.0112�a�, 0.0122�b� 0.0118 0.0267

1/8 1/4 Dxx=41.5�a�, 40.5�b� 43.6 28.3

Dyy =0.0112�a�, 0.0113�b� 0.0115 0.0178
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place D0 with DN−1
E , UN−1 with UN−2, kN with kN−1, and so on.

When doing so, we arrive at

DN−2
E � DN−1

E + const
DN−1

E �
uN−1
2�kN−1
2

�DN−1
E kN−1

2 �2 + �kN−1
UN−1
�2 �70�

and similarly for UN−2
E , and so on, for N−3, N−4, etc.

The effective asymptotic eddy diffusivity DE is obtained
by iterating the recursive relation �70�. Two interesting limits
have been identified.

�i� The dominant term in the denominator of Eq. �70� is
�DN−1

E kN−1
2 �2 and the recursive formula becomes

DN−2
E � DN−1

E + const
�
uN−1
2�
DN−1

E kN−1
2 . �71�

�ii� The dominant term in the denominator of Eq. �70� is
�kN−1
UN−1
�2 and we thus have

DN−2
E � DN−1

E �1 + const
�
uN−1
2�

UN−1
2 � . �72�

The relation �71� coincides with the result obtained by Mof-
fatt �30�. Iterating �71� one easily obtains

DE �	 k−2E�k�dk , �73�

i.e., an eddy diffusivity which does not depend on the mo-
lecular diffusivity D0.

On the contrary, exploiting the fact that UN1
�u0 from

�72� one has

DE  D0�1 + const�
n

�
un
2�

u0
2 � � D0. �74�

In summary, from the iteration of the recursive rule �70� one
can obtain at least two fixed points. In the first case the
asymptotic eddy diffusivity is determined only from the ve-
locity field and it does not depend on D0. This allows for
values of DE much larger than D0. In the second limit, one
has a small variation of the asymptotic eddy diffusivity
which remains of the same order as D0.

VI. CONCLUSIONS

We have investigated both analytically and numerically
the preasymptotic transport of a passive scalar field on large
scales, say, of order L. The velocity field advecting the scalar
is formed by a large-scale component U varying on scales of
order of L and by a small-scale fluctuation u, which varies on
scales of order of � much smaller than L. The presence of a
small parameter � /L naturally allows a perturbative analysis:
the so-called multiple-scale strategy.

The following results must be emphasized.
�1� Preasymptotic scalar transport is ruled by a Fokker-

Planck equation involving an effective eddy-diffusivity field

and an effective advecting velocity. Although explicit expres-
sions for such effective fields cannot be determined in gen-
eral, nevertheless it is apparent that the eddy diffusivity does
depend on the large-scale advecting velocity. This is in con-
trast with the usual point of view which sees the eddy diffu-
sivity as the cumulative result of interactions involving only
the small scales. This aspect can be rather relevant in a geo-
physical context �31�.

�2� If one makes the additional assumption that small-
scale fluctuations are sufficiently weaker than the large-scale
fluctuations �i.e., u /U�1�, an approximate explicit expres-
sion for the eddy-diffusivity tensorial field can be obtained.
This expression makes explicit the dependence of the eddy
diffusivity on the large-scale velocity, which, in turn, carries
a spatiotemporal dependence on large scales.

�3� If the small-scale velocity u has defined parity under
spatial and temporal inversion, only the symmetric part of
Dij is relevant for the preasymptotic dynamics. The same
conclusion holds if u is a small-scale stationary, homoge-
neous, and isotropic turbulent field.

�4� We have tested numerically the validity of our ap-
proximated expression for the eddy diffusivity for values of
u /U and � /L not necessarily much less than unity. As ex-
pected, the range of reliability of our approximation extends
to finite values of the above ratios. This seems an important
conclusion for applications in the realm of geophysics and
oceanography.

�5� Exploiting the explicit formula for the eddy diffusiv-
ity, we have presented a generalization of our results to situ-
ations with a continuum of active scales. This procedure
gives rise to a sort of renormalization group through which it
is possible to extract two completely different regimes of
transport.

We would like to conclude with a short discussion on the
applicability of our results and, more generally, of multiple-
scale techniques to geophysical problems. As far as the first
point is concerned, a paradigmatic example of a possible
application is provided by the investigation of pollutant dis-
persion in the planetary boundary layer. The latter is a thin
�1000 m� atmospheric layer near the ground, where the
airflow is strongly driven by sink and source forcing terms
arising from the bottom boundary, e.g., due to the orography.
The decomposition of the velocity field as v=u+U, u being
a fluctuating random component, whose statistical properties
are prescribed and U a slowly varying part, is a standard
decomposition. By way of example, the slow component U
describes synoptic variations while the fast component u
modelizes, for instance, orographic excitations.

Let us now point out some important limitations in the
applicability of the multiple-scale analysis to geophysical
problems. A first obvious limit comes from the separation
between the characteristic scales of the flow. The multiple-
scale approach is strictly valid only in the case of large sepa-
ration, while the typical separation of scales and amplitudes
in realistic geophysical flows is not very large. Actually, this
does not seem a severe restriction, since the results obtained
in the limit of infinite separation provide rather good ap-
proximations also valid for moderate separations �see, e.g.,
the numerical results of Sec. IV�.

Moreover, the multiple-scale approach requires a detailed
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knowledge of the Eulerian velocity field, which is not always
available experimentally. It thus seems to us that an attempt
to build a preasymptotic equation for the transport, using
only Lagrangian experimental data, should be a further im-
portant step toward a satisfactory understanding of how to
modelize large-scale transport in geophysical flows.
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